Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(15): 4732-4748, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37498626

RESUMO

The development of safe therapeutics to manage pain is of central interest for biomedical applications. The fluorinated fentanyl derivative N-(3-fluoro-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (NFEPP) is potentially a safer alternative to fentanyl because unlike fentanyl─which binds to the µ-opioid receptor (MOR) at both physiological and acidic pH─NFEPP might bind to the MOR only at acidic pH typical of inflamed tissue. Knowledge of the protonation-coupled dynamics of the receptor-drug interactions is thus required to understand the molecular mechanism by which receptor activation initiates cell signaling to silence pain. To this end, here we have carried out extensive atomistic simulations of the MOR in different protonation states, in the absence of opioid drugs, and in the presence of fentanyl vs NFEPP. We used graph-based analyses to characterize internal hydrogen-bond networks that could contribute to the activation of the MOR. We find that fentanyl and NFEPP prefer distinct binding poses and that, in their binding poses, fentanyl and NFEPP partake in distinct internal hydrogen-bond networks, leading to the cytoplasmic G-protein-binding region. Moreover, the protonation state of functionally important aspartic and histidine side chains impacts hydrogen-bond networks that extend throughout the receptor, such that the ligand-bound MOR presents at its cytoplasmic G-protein-binding side, a hydrogen-bonding environment where dynamics depend on whether fentanyl or NFEPP is bound, and on the protonation state of specific MOR groups. The exquisite sensitivity of the internal protein-water hydrogen-bond network to the protonation state and to details of the drug binding could enable the MOR to elicit distinct pH- and opioid-dependent responses at its cytoplasmic G-protein-binding site.


Assuntos
Fentanila , Receptores Opioides , Humanos , Fentanila/farmacologia , Fentanila/química , Analgésicos Opioides/farmacologia , Receptores Opioides mu/metabolismo , Dor , Hidrogênio
2.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903648

RESUMO

Oxygenase activity of the flavin-dependent enzyme RutA is commonly associated with the formation of flavin-oxygen adducts in the enzyme active site. We report the results of quantum mechanics/molecular mechanics (QM/MM) modeling of possible reaction pathways initiated by various triplet state complexes of the molecular oxygen with the reduced flavin mononucleotide (FMN) formed in the protein cavities. According to the calculation results, these triplet-state flavin-oxygen complexes can be located at both re-side and si-side of the isoalloxazine ring of flavin. In both cases, the dioxygen moiety is activated by electron transfer from FMN, stimulating the attack of the arising reactive oxygen species at the C4a, N5, C6, and C8 positions in the isoalloxazine ring after the switch to the singlet state potential energy surface. The reaction pathways lead to the C(4a)-peroxide, N(5)-oxide, or C(6)-hydroperoxide covalent adducts or directly to the oxidized flavin, depending on the initial position of the oxygen molecule in the protein cavities.


Assuntos
Oxigenases de Função Mista , Ruta , Oxigenases de Função Mista/metabolismo , Ruta/metabolismo , Peróxidos/química , Flavinas/química , Oxigênio/química , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Oxirredução
3.
J Am Chem Soc ; 145(2): 1040-1052, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36607126

RESUMO

Blue light sensing using flavin (BLUF) domains constitute a family of flavin-binding photoreceptors of bacteria and eukaryotic algae. BLUF photoactivation proceeds via a light-driven hydrogen-bond switch among flavin adenine dinucleotide (FAD) and glutamine and tyrosine side chains, whereby FAD undergoes electron and proton transfer with tyrosine and is subsequently re-oxidized by a hydrogen back-shuttle in picoseconds, constituting an important model system to understand proton-coupled electron transfer in biology. The specific structure of the hydrogen-bond patterns and the prevalence of glutamine tautomeric states in dark-adapted (DA) and light-activated (LA) states have remained controversial. Here, we present a combined femtosecond stimulated Raman spectroscopy (FSRS), computational chemistry, and site-selective isotope labeling Fourier-transform infrared spectroscopy (FTIR) study of the Slr1694 BLUF domain. FSRS showed distinct vibrational bands from the FADS1 singlet excited state. We observed small but significant shifts in the excited-state vibrational frequency patterns of the DA and LA states, indicating that these frequencies constitute a sensitive probe for the hydrogen-bond arrangement around FAD. Excited-state model calculations utilizing four different realizations of hydrogen bond patterns and glutamine tautomeric states were consistent with a BLUF reaction model that involved glutamine tautomerization to imidic acid, accompanied by a rotation of its side chain. A combined FTIR and double-isotope labeling study, with 13C labeling of FAD and 15N labeling of glutamine, identified the glutamine imidic acid C═N stretch vibration in the LA state and the Gln C═O in the DA state. Hence, our study provides support for glutamine tautomerization and side-chain rotation in the BLUF photoreaction.


Assuntos
Glutamina , Fotorreceptores Microbianos , Glutamina/química , Prótons , Flavina-Adenina Dinucleotídeo/química , Proteínas de Bactérias/química , Fotorreceptores Microbianos/química , Luz , Tirosina , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Orgânicos
4.
J Chem Phys ; 158(3): 034303, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681637

RESUMO

Cryptochrome photoreceptors contain a photochemically generated radical pair, which is thought to mediate sensing of the geomagnetic field direction in many living organisms. To gain insight into the response of the cryptochrome to a weak magnetic field, we have studied the quantum-mechanical hyperfine spin states of the radical pair. We identify quantum states responsible for the precise detection of the magnetic field direction, taking into account the strongly axial hyperfine interactions of each radical in the radical pair. The contribution of these states to the formation of the cryptochrome signaling state sharply increases when the magnetic field becomes orthogonal to the hyperfine axis of either radical. Due to such a response, the radical pair may be able to detect the particular field direction normal to the plane containing the hyperfine axes of the radicals.


Assuntos
Criptocromos , Campos Magnéticos , Criptocromos/química , Transporte de Elétrons , Anisotropia
5.
Mol Inform ; 42(2): e2200175, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36259359

RESUMO

Modern quantum-based methods are employed to model interaction of the flavin-dependent enzyme RutA with the uracil and oxygen molecules. This complex presents the structure of reactants for the chain of chemical reactions of monooxygenation in the enzyme active site, which is important in drug metabolism. In this case, application of quantum-based approaches is an essential issue, unlike conventional modeling of protein-ligand interaction with force fields using molecular mechanics and classical molecular dynamics methods. We focus on two difficult problems to characterize the structure of reactants in the RutA-FMN-O2 -uracil complex, where FMN stands for the flavin mononucleotide species. First, location of a small O2 molecule in the triplet spin state in the protein cavities is required. Second, positions of both ligands, O2 and uracil, must be specified in the active site with a comparable accuracy. We show that the methods of molecular dynamics with the interaction potentials of quantum mechanics/molecular mechanics theory (QM/MM MD) allow us to characterize this complex and, in addition, to surmise possible reaction mechanism of uracil oxygenation by RutA.


Assuntos
Ruta , Ligantes , Proteínas , Simulação de Dinâmica Molecular , Oxigênio
6.
Curr Opin Struct Biol ; 77: 102496, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462226

RESUMO

The structural dynamics underlying molecular mechanisms of light-sensitive proteins can be studied by a variety of experimental and computational biophysical techniques. Here we review recent progress in combining time-resolved crystallography at X-ray free electron lasers and quantum chemical calculations to study structural changes in photoenzymes, photosynthetic proteins, photoreceptors, and photoswitchable fluorescent proteins following photoexcitation.


Assuntos
Lasers , Proteínas , Cristalografia por Raios X , Proteínas/química , Raios X
7.
Chemphyschem ; 23(19): e202200192, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35959919

RESUMO

Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.


Assuntos
Escherichia coli , Microscopia , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Proteínas Luminescentes/química
8.
J Chem Inf Model ; 61(8): 3964-3977, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34351148

RESUMO

Opioid drug binding to specialized G protein-coupled receptors (GPCRs) can lead to analgesia upon activation via downstream Gi protein signaling and to severe side effects via activation of the ß-arrestin signaling pathway. Knowledge of how different opioid drugs interact with receptors is essential, as it can inform and guide the design of safer therapeutics. We performed quantum and classical mechanical computations to explore the potential energy landscape of four opioid drugs: morphine and its derivatives heroin and fentanyl and for the unrelated oliceridine. From potential energy profiles for bond twists and from interactions between opioids and water, we derived a set of force-field parameters that allow a good description of structural properties and intermolecular interactions of the opioids. Potential of mean force profiles computed from molecular dynamics simulations indicate that fentanyl and oliceridine have complex energy landscapes with relatively small energy penalties, suggesting that interactions with the receptor could select different binding poses of the drugs.


Assuntos
Morfina , Preparações Farmacêuticas , Analgésicos Opioides , Heroína , Receptores Opioides mu , Compostos de Espiro , Tiofenos
9.
J Phys Chem Lett ; 12(34): 8263-8271, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34424693

RESUMO

The role of protonation states of the chromophore and its neighboring amino acid side chains of the reversibly switching fluorescent protein rsEGFP2 upon photoswitching is characterized by molecular modeling methods. Numerous conformations of the chromophore-binding site in computationally derived model systems are obtained using the quantum chemistry and QM/MM approaches. Excitation energies are computed using the extended multiconfigurational quasidegenerate perturbation theory (XMCQDPT2). The obtained structures and absorption spectra allow us to provide an interpretation of the observed structural and spectral properties of rsEGFP2 in the active ON and inactive OFF states. The results demonstrate that in addition to the dominating anionic and neutral forms of the chromophore, the cationic and zwitterionic forms may participate in the photoswitching of rsEGFP2. Conformations and protonation forms of the Glu223 and His149 side chains in the chromophore-binding site play an essential role in stabilizing specific protonation forms of the chromophore.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Prótons , Teoria Quântica , Sítios de Ligação , Modelos Moleculares , Conformação Proteica
10.
Photochem Photobiol ; 97(2): 243-269, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369749

RESUMO

This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.


Assuntos
Proteínas de Bactérias/química , Proteínas de Fluorescência Verde/química , Modelos Moleculares , Fotorreceptores Microbianos/química , Fitocromo/química , Rodopsina/química , Distribuição de Poisson , Teoria Quântica , Eletricidade Estática
11.
Phys Chem Chem Phys ; 22(16): 8535-8544, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32301950

RESUMO

Photoinduced double-bond isomerisation of the chromophore of photoactive yellow protein (PYP) is highly sensitive to chromophore-protein interactions. On the basis of high-level ab initio calculations, we scrutinise the effect of hydrogen bonds on the photophysical and photochemical properties of the chromophore. We identify four resonance structures - two closed-shell and two biradicaloid - that elucidate the electronic structure of the ground and first excited states involved in the isomerisation process. Changing the relative energies of the resonance structures by hydrogen-bonding interactions tunes all photochemical properties of the chromophore in an interdependent manner. Our study sheds new light on the role of the chromophore electronic structure in tuning in photosensors and fluorescent proteins.


Assuntos
Proteínas de Bactérias/química , Fotoquímica , Fotorreceptores Microbianos/química , Proteínas de Bactérias/efeitos da radiação , Ligação de Hidrogênio , Isomerismo , Luz , Fotorreceptores Microbianos/efeitos da radiação , Estrutura Terciária de Proteína
12.
Nat Commun ; 10(1): 3177, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320619

RESUMO

Bacteriorhodopsin (bR) is a light-driven proton pump. The primary photochemical event upon light absorption is isomerization of the retinal chromophore. Here we used time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultrafast spectroscopy were used to identify a sequential two-photon absorption process, leading to excitation of a tryptophan residue flanking the retinal chromophore, as a first manifestation of multiphoton effects. We resolve distinct stages in the structural dynamics of the all-trans retinal in photoexcited bR to a highly twisted 13-cis conformation. Other active site sub-picosecond rearrangements include correlated vibrational motions of the electronically excited retinal chromophore, the surrounding amino acids and water molecules as well as their hydrogen bonding network. These results show that this extended photo-active network forms an electronically and vibrationally coupled system in bR, and most likely in all retinal proteins.


Assuntos
Bacteriorodopsinas/química , Halobacterium salinarum/metabolismo , Retinaldeído/química , Cristalografia , Isomerismo , Luz , Fótons , Conformação Proteica , Análise Espectral , Água/química
13.
Faraday Discuss ; 207: 9-26, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29583144

RESUMO

Light is an important environmental variable and most organisms have evolved means to sense, exploit or avoid it and to repair detrimental effects on their genome. In general, light absorption is the task of specific chromophores, however other biomolecules such as oligonucleotides also do so which can result in undesired outcomes such as mutations and cancer. Given the biological importance of light-induced processes and applications for imaging, optogenetics, photodynamic therapy or photovoltaics, there is a great interest in understanding the detailed molecular mechanisms of photoinduced processes in proteins and nucleic acids. The processes are typically characterized by time-resolved spectroscopic approaches or computation, inferring structural information on transient species from stable ground state structures. Recently, however, structure determination of excited states or other short-lived species has become possible with the advent of X-ray free-electron lasers. This review gives an overview of the impact of structure on the understanding of photoinduced processes in macromolecules, focusing on systems presented at this Faraday Discussion meeting.


Assuntos
DNA/química , Luz , Proteínas/química , Humanos , Substâncias Macromoleculares/química , Estrutura Molecular , Processos Fotoquímicos
14.
Chemistry ; 23(31): 7526-7537, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28370554

RESUMO

Pyrimidine dimers are the most common DNA lesions generated under UV radiation. To reveal the molecular mechanisms behind their formation, it is of significance to reveal the roles of each pyrimidine residue. We thus replaced the 5'-pyrimidine residue with a photochemically inert xylene moiety (X). The electron-rich X can be readily oxidized but not reduced, defining the direction of interbase electron transfer (ET). Irradiation of the XpT dinucleotide under 254 nm UV light generates two major photoproducts: a pyrimidine (6-4) pyrimidone analog (6-4PP) and an analog of the so-called spore photoproduct (SP). Both products are formed by reaction at C4=O of the photo-excited 3'-thymidine (T), which indicates that excitation of a single "driver" residue is sufficient to trigger pyrimidine dimerization. Our quantum-chemical calculations demonstrated that photo-excited 3'-T accepts an electron from 5'-X. The resulting charge-separated radical pair lowers its energy upon formation of interbase covalent bonds, eventually yielding 6-4PP and SP.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Elétrons , Dímeros de Pirimidina/biossíntese , Fosfatos de Dinucleosídeos/química
15.
J Phys Chem B ; 120(14): 3493-502, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27005558

RESUMO

Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer.


Assuntos
Elétrons , Indóis/química , Melaninas/química , Polímeros/química , Análise Espectral , Modelos Moleculares , Conformação Molecular
16.
Sci Rep ; 6: 22669, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26947391

RESUMO

BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with (15)N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm(-1) is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm(-1) exhibiting the characteristic strong downshift by (15)N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Glutamina/química , Isomerismo , Luz , Proteínas de Protozoários/química , Proteínas de Protozoários/efeitos da radiação , Proteínas de Bactérias/metabolismo , Glutamina/metabolismo , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/metabolismo , Análise Espectral
17.
J Am Chem Soc ; 138(13): 4368-76, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27002596

RESUMO

The spread of the absorbance of the stable FADH(•) radical (300-700 nm) allows CPD photolyase to highly efficiently form FADH(-), making it functional for DNA repair. In this study, FTIR spectroscopy detected a strong hydrogen bond, from FAD N5-H to the carbonyl group of the Asn378 side chain, that is modulated by the redox state of FAD. The observed characteristic frequency shifts were reproduced in quantum-mechanical models of the flavin binding site, which were then employed to elucidate redox tuning governed by Asn378. We demonstrate that enhanced hydrogen bonding of the Asn378 side chain with the FADH(•) radical increases thermodynamic stabilization of the radical state, and further ensures kinetic stabilization and accumulation of the fully reduced FADH(-) state.


Assuntos
Asparagina/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , Asparagina/química , Sítios de Ligação , Bis-Fenol A-Glicidil Metacrilato , Reparo do DNA , Escherichia coli/enzimologia , Flavina-Adenina Dinucleotídeo/química , Hidrogênio , Ligação de Hidrogênio , Cinética , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Chem Theory Comput ; 11(8): 3878-94, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26574469

RESUMO

We investigate the origin of the excitation energy shifts induced by the apoprotein in the active site of the bacterial photoreceptor BLUF (Blue Light sensor Using Flavin adenine dinucleotide). In order to compute the vertical excitation energies of three low-lying electronic states, including two π-π* states of flavin (S1 and S2) and a π-π* tyrosine-flavin electron-transfer state (ET), with respect to the energy of the closed-shell ground state (S0), we prepared alternative quantum mechanical (QM) cluster and quantum mechanics/molecular mechanics (QM/MM) models. We found that the excitation energies computed with both types of models correlate with the magnitude of the charge transfer character of the excitation. Accordingly, we conclude that the small charge transfer character of the light absorbing S0-S1 transition and the substantial charge transfer character of the nonabsorbing but redox active S0-ET transition explain the small color changes but substantial redox tuning in BLUF and also in other flavoproteins. Further analysis showed that redox tuning is governed by the electrostatic interaction in the QM/MM model and transfer of charge between the active site and its environment in the QM cluster. Moreover, the wave function polarization of the QM subsystem by the MM subsystem influences the magnitude of the charge transfer, resulting in the QM/MM and QM excitation energies that are not entirely consistent.


Assuntos
Flavoproteínas/química , Simulação de Dinâmica Molecular , Teoria Quântica , Domínio Catalítico , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Flavoproteínas/metabolismo , Oxirredução , Eletricidade Estática
19.
J Phys Chem B ; 119(16): 5176-83, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25830816

RESUMO

The iLOV protein is one of the most promising members of the family of engineered flavin-based fluorescent proteins (FbFPs), considered as an alternative to the green fluorescent protein family. We modeled the spectral properties of iLOV using quantum chemistry, quantum mechanics/molecular mechanics (QM/MM), and molecular dynamics approaches. Computational results predict that the conserved Gln489 side chain in iLOV adopts two almost equally populated conformations, Glnin and Glnout, altering hydrogen bonding near the flavin chromophore. Formation of the flavinN5-Gln489 and flavinO4-Gln489 hydrogen bonds in the case of Glnin accounts for the pronounced shifts of the flavin absorption and fluorescence maxima to the longer wavelengths. Following these results, we propose to introduce a point mutation in iLOV, Q489K, with the aim to obtain a more red-shifted variant. According to our simulations, this mutation should lead to a considerable, about 50 nm, red shift of the absorption and emission band maxima, thus introducing a new color in the FbFP palette.


Assuntos
Flavinas/química , Proteínas Luminescentes/química , Simulação de Dinâmica Molecular , Teoria Quântica , Proteínas Luminescentes/genética , Estrutura Molecular , Mutação
20.
Methods Mol Biol ; 1146: 191-228, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24764094

RESUMO

Extensive interest in photosensory proteins stimulated computational studies of flavins and flavoproteins in the past decade. This review is dedicated to the three central topics of these studies: calculations of flavin UV-visible and IR spectra, simulated dynamics of photoreceptor proteins, and flavin photochemistry. Accordingly, this chapter is divided into three parts; each part describes corresponding computational protocols, summarizes computational results, and discusses the emerging mechanistic picture.


Assuntos
Flavoproteínas/química , Fotoquímica , Análise Espectral , Sítios de Ligação , Flavinas/química , Flavinas/metabolismo , Flavoproteínas/metabolismo , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA